Fluid Management in Dialysis

Swimming Against the Tide

Objectives

- Discuss the physiologic effects of fluid volume in the renal patient
- Recognize nursing challenges in managing fluid volume excess and deficit
- Summarize the medical and non-medical strategies utilized in maintaining appropriate fluid volume

Body Fluid Estimates

- Total body water
 - 60% x body weight
- Intracellular
 - 2/3 total body water
- Extracellular
 - 1/3 total body water
- Plasma
 - 1/4 extracellular water

Fluid Regulation

- Kidneys
- Sympathetic nervous system
- Antidiuretic hormone (ADH)
- Renin-angiotensin-system
- Atrial natriuretic peptide (ANP)
- Thirst mechanism

Fluid Regulation

- Antidiuretic hormone (ADH)
 - Responds to body fluid osmolarity
 - Water retention
- Renin-angiotensin-aldosterone system
 - Macula densa mechanism
 - Baroreceptor mechanism
 - Beta-adrenergic mechanism
Fluid Regulation
- Atrial natriuretic peptide (ANP)
 - Responds to atrial distention
 - ANF-induced natriuresis

- Thirst mechanism
 - Physiologic
 - Habit

Sodium Regulation
- Intake
 - Tubular functions
 - Filtration
 - Absorption
 - Excretion

Fluid Movement
- Fluid shift from the interstitial space to the intravascular space
 - UF leads to fluid removal
 - Fluid removal leads to decreased hydrostatic pressure
 - Fluid removal leads to increased oncotic pressure
 - Fluid shift occurs

Plasma Refilling
- Maintains higher plasma volume
- Maintains a higher BP
- Allows continued fluid removal
 - UFR > plasma refilling rate = hypotension

Plasma Refilling Rate
- Depends on the following factors:
 - State of hydration
 - UF rate
 - Dialysate sodium concentration
 - Total protein balance
 - Capillary permeability

Factors Affecting Relative Blood Volume
- Hydration status
- Intravascular blood volume distribution
- Postural changes
- Exercise
- Food intake
- CV medications
- IV infusions
Estimated Dry Weight
- Clinical assessment
 - Trial and error
- Technological methods
 - Biochemical markers
 - Bioimpedance analysis
 - Blood volume monitoring
 - Echocardiographic studies

Defining Dry Weight
- The lowest weight a patient can tolerate without the development of symptoms or hypotension (Henderson)
- The lowest weight a patient can tolerate without intradialytic symptoms or hypotension, in the absence of overt fluid overload (Jaeger & Mehta)

Biochemical Markers
- Plasma natriuretic peptides
 - Plasma atrial natriuretic peptide
 - ANP
 - Brain natriuretic peptide
 - BNP
 - N-terminal pro-BNP
 - NT pro-BNP

Bioelectrical Impedance
- Based on electrical properties of body tissues
- Used to assess extracellular volume (ECV), intracellular volume (ICV), and total body water (TBW)
- Can be applied for dry weight determination
Bioelectrical Impedance
- Whole body (wrist-to-ankle) bioimpedance
- Segmental bioimpedance
 - Calf bioimpedance
 - Allows for continuous intradialytic monitoring
 - Based on the assumption that calf ECV directly reflects whole body ECV

Blood Volume Monitor (BVM)
- Special non-invasive device
- Continuously evaluates the relative blood volume (RBV)
- Expresses blood volume as a percentage of the starting blood volume

Blood Volume Monitoring
- Detects a rapid decrease in blood volume during HD when UF > plasma refilling rate
- Does not differentiate between EDW achieved or UF too high in relation to patient’s plasma refilling rate

Echocardiography of Inferior Vena Cava Diameter
- Noninvasive study
- Reliable
- Can be used to determine EDW as well as antihypertensive treatment
 - 8 - 11.5/m²
 - Normotensive
 - Normovolemic

Clinical Assessment
- Ongoing process
- Pre-dialysis assessment
- During HD treatment
- Post-dialysis assessment
- Triad
 - History
 - Physical assessment
 - Diagnostic studies

Assessment of Fluid Status
- Vital signs
- History
- Physical examination
- Laboratory studies
- Treatment history
Assessment of Fluid Status
- Vital signs
- History
 - General
 - Heart
 - Lungs
 - GI
 - Peripheral vascular
 - Skin

Assessment of Fluid Status
- Physical examination
 - Heart
 - Lungs
 - GI
 - Peripheral vascular
 - Skin

Assessment of Fluid Status
- Laboratory studies
 - Albumin
 - Glucose
 - Hematocrit
 - Serum sodium
- Treatment history

<table>
<thead>
<tr>
<th></th>
<th>Pre wt</th>
<th>Post wt</th>
<th>EDW</th>
<th>Pre BP</th>
<th>Post BP</th>
<th>Low BP</th>
<th>Time on</th>
<th>Tx time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>119.5</td>
<td>118.9</td>
<td>115.6</td>
<td>115.9</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>113.0</td>
<td>112.6</td>
<td>109.3</td>
<td>109.4</td>
<td>111.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108.5</td>
<td>109.5</td>
<td>108.5</td>
<td>108.5</td>
<td>108.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>176/92</td>
<td>121/67</td>
<td>125/65</td>
<td>138/91</td>
<td>188/102</td>
<td>175/80</td>
<td>154/90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133/79</td>
<td>109/61</td>
<td>103/49</td>
<td>175/80</td>
<td>154/90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>133/79</td>
<td>107/58</td>
<td>99/44</td>
<td>130/66</td>
<td>154/85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5:00</td>
<td>5:00</td>
<td>5:00</td>
<td>5:00</td>
<td>5:00</td>
<td>5:00</td>
<td>5:00</td>
<td>5:00</td>
</tr>
</tbody>
</table>

Fluid Volume Excess
- Vital signs
 - Elevated BP
 - Full, bounding pulse
 - Increased respirations
 - Increased weight

Fluid Volume Excess
- History
 - Cough
 - Dyspnea on exertion
 - Dyspnea
 - Orthopnea
 - Swelling
Fluid Volume Excess
- Physical exam
 - Periorbital edema
 - Distended neck veins
 - S3
 - Crackles, wheezes
 - Abdominal distention, ascites
 - Peripheral edema

- Laboratory studies
 - Decreased hematocrit
 - Decreased serum sodium

Fluid Volume Excess
- Treatment history
 - Elevated BP
 - Edema
 - Excessive IDWG
 - Missed or shortened HD treatments
 - Post weight > EDW

Fluid Volume Deficit
- Vital signs
 - Decreased BP
 - Orthostatic hypotension
 - Tachycardia
 - Increased temperature
 - Decreased weight

Fluid Volume Deficit
- History
 - Fatigue
 - Weakness
 - Dizziness
 - Muscle cramps
 - Nausea/vomiting
 - Diarrhea

- Physical exam
 - Dry mucous membranes
 - Flat neck veins
 - Poor skin turgor
 - Delayed capillary refill
 - Diminished pulses
Fluid Volume Deficit
- Laboratory studies
 - Increased hematocrit
 - Increased serum sodium

Fluid Volume Deficit
- Treatment history
 - Hypotension
 - Muscle cramps
 - Minimal or no IDWG
 - Weight < EDW
 - Interventions to treat symptoms (NS bolus, hypertonic saline)

EDW Overestimated
- Hypertension
- Cardiovascular disease
- Cerebrovascular disease
- Lean body mass changes

Chronic Volume Overload
- Left ventricular hypertrophy
- Left ventricular dilatation
- Arterial hypertension
- Congestive heart failure
- Increased CV mortality

Strict Volume Control

<table>
<thead>
<tr>
<th></th>
<th>SBP</th>
<th>DBP</th>
<th>CTI</th>
<th>IDWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>150 ± 31</td>
<td>89 ± 16</td>
<td>0.50 ± 0.06</td>
<td>1440 ± 360</td>
</tr>
<tr>
<td>End</td>
<td>121 ± 14*</td>
<td>75 ± 8*</td>
<td>0.46 ± 0.05*</td>
<td>930 ± 240*</td>
</tr>
</tbody>
</table>

*P<0.001

EDW Underestimated
- Cramping
- Dizziness
- Hypotension
- Nausea
- Vomiting
- Diaphoresis
Sodium Modeling

- Step
 - Stepped patterns
- Linear
 - Straight line
- Exponential
 - Curved line

Sodium Modeling

- Sodium level highest at beginning of tx
 - 150 - 155
- Sodium level returned to baseline by end of tx
 - 138 - 140

Dialysate Sodium Concentration

- 140 mEq/l sodium concentration
- Increased interdialytic weight gains
- More difficult BP control
 - Higher percentage of patients required BP meds
 - Often, multiple classes of BP meds were prescribed

Ultrafiltration Profiling

- Improve patient comfort and stability during HD
- Allows equilibration between ICF and ECF compartments
- Various profiles to meet the needs of the patient

Study on Impact of Sodium and UF Profiling

- Study purpose
 - To evaluate the effects of sodium and UF profiling on blood volume, cardiac function and hypotensive episodes
- Study population
 - N = 8
 - Stable HD pts with hypotension in >20% of the HD treatments in previous 3 months

Treatment Protocols

- Control
 - Constant sodium (138) with constant UF
- Sodium profile
 - Linear sodium (148-131) with constant UF
- UF profile
 - Linear UF rate with constant sodium (138)
- Sodium + UF profile
 - Combination sodium and UF profile

Patient Monitoring
- Relative blood volume
- Mean BP
- Heart rate
- Interior vena cava diameter
- Stroke volume
- Cardiac output
- Plasma sodium concentration
- Symptomatic hypotensive episodes

Frequency of IDH

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sodium</th>
<th>UF</th>
<th>Sodium + UF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IDH Risk Factors
- Diabetes mellitus
- Older age
- Autonomic neuropathy
- Cardiovascular disease
- Interdialytic weight gain > 3% body weight

Mechanisms of IDH
- Rate of UF exceeds CV compensation
- Cardiac dysfunction
- Decline in plasma osmolality and ECF volume
- Autonomic dysfunction
- Release of vasodilators

Management of IDH Episode
- Normal Saline
- Trendelenburg position
- Increase BP monitoring
- Decrease UF rate
- Turn off UF
- Hypertonic saline
- Mannitol
- Albumin

Prevention of IDH Episode
- EDW adjustment
- Patient education - fluid intake
- Sodium modeling
- UF profiling
- Lower dialysate temperature
- Extra treatment for UF only
- Use of Crit lines

Dialysate Temperature Reduction
- Beneficial effect on BP
- Increased peripheral resistance
- Decreased IDH
- No adverse effect on adequacy
- Optimal temperature setting is unknown
- Unpleasant thermal symptoms

IDH Prevention - Medications
- Midodrine
- Levocarnitine
- Fludrocortisone
- Caffeine
- Ephedrine
- Sertraline
- Vasopressin

Intradialytic Morbid Events
- Mainly due to UF-induced hypovolemia
- Most frequent complication during HD
- Increases patient discomfort
- Reduces treatment efficacy
- Increases patient morbidity

Intradialytic Morbid Events

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension</td>
<td>508</td>
<td>66.8</td>
</tr>
<tr>
<td>Cramps</td>
<td>99</td>
<td>13.0</td>
</tr>
<tr>
<td>Dizziness</td>
<td>36</td>
<td>4.7</td>
</tr>
<tr>
<td>Nausea</td>
<td>23</td>
<td>3.0</td>
</tr>
<tr>
<td>Headache</td>
<td>15</td>
<td>2.0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>13</td>
<td>1.7</td>
</tr>
<tr>
<td>Others</td>
<td>66</td>
<td>8.7</td>
</tr>
<tr>
<td>Total</td>
<td>760</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Managing Fluid Intake
- Habit
- Thirst
- Oral dryness

HD Sessions with IME

<table>
<thead>
<tr>
<th># of HD tx</th>
<th># of IME/tx</th>
<th>% of all tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>0</td>
<td>45.3</td>
</tr>
<tr>
<td>183</td>
<td>1</td>
<td>31.3</td>
</tr>
<tr>
<td>79</td>
<td>2</td>
<td>13.5</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>2.1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Managing Fluid Intake

- Patient education
- Behavioral strategies

Interdialytic Weight Gain

- Patterns
- Factors
- Interventions

IDWG During First Year of HD

- Retrospective study
- N = 27
- IDWG
 - Increased first 12 weeks
 - Decreased after 12 weeks
 - Increased after 32 weeks
- Implications for nursing

Cognitive Behavioral Therapy

- Glasgow University Liquid-Intake Program (GULP)
 - To assist adult nonadherent HD pts to improve their fluid restriction self-management
 - N = 56
 - 29 - immediate treatment group
 - 27 - deferred treatment group

Results

- Baseline assessment
 - 100% nonadherence
- Post-treatment assessment
 - 19.6% adherence
- Follow-up assessment
 - 37.5% adherence
Managing Sodium Intake

- Patient education
 - 2 Gm sodium diet
 - Read labels
 - < 400 mg/serving
- Behavioral strategies
 - "salt addiction"
 - Takes time for the taste threshold to reset

QUESTIONS?
References

